Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 8(2): 113-116, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619417

RESUMO

Inverse vulcanization is the method by which molten sulfur can be combined with comonomers to form stable polymers termed "organically modified chalcogenide" or "ORMOCHALC" polymers. One advantage to ORMOCHALC polymers is that they can possess important optical properties, such as high refractive index and strong infrared (IR) transmission, while being easier to fabricate than glass materials with similar optical properties. In the present work, a new ORMOCHALC is fabricated by using tetravinyltin as a comomoner with sulfur. This is the first example of an organometallic molecule being used as a comonomer to develop ORMOCHALCs. The result is an ORMOCHALC polymer that has the highest refractive index reported for a "sulfur and comonomer" polymer and that demonstrates unprecedented transmission in the IR region.

2.
ACS Omega ; 3(3): 3314-3320, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458587

RESUMO

Strong, flexible, and transparent materials have garnered tremendous interest in recent years as materials and electronics manufacturers pursue devices that are bright, flexible, durable, tailorable, and lightweight. Depending on the starting components, polymers fabricated using thiol-yne chemistry have been shown to be exceptionally strong and/or flexible, while also being amenable to modification by the incorporation of nanoparticles. In the present work, novel ligands were synthesized and used to functionalize quantum dots (QDs) of various diameters. The functionalized QDs were then incorporated into thiol-yne prepolymer matrices. These matrices were subsequently polymerized to form QD thiol-yne nanocomposite polymers. To demonstrate the versatility of the fabrication process, the prepolymers were either thermally cured or photopolymerized. The resulting transparent nanocomposites expressed the size-specific color of the QDs within them when exposed to ultraviolet irradiation, demonstrating that QDs can be incorporated into thiol-yne polymers without significantly altering QD expression. With the inclusion of QDs, thiol-yne nanocomposite polymers are promising candidates for use in numerous applications including as device display materials, optical lens materials, and/or sensor materials.

3.
Opt Express ; 24(22): 25697-25703, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828505

RESUMO

Negative curvature fibers have been gaining attention as fibers for high power infrared light. Currently, these fibers have been made of silica glass and infrared glasses solely through stack and draw. Infrared glasses' lower softening point presents the opportunity to perform low-temperature processing methods such as direct extrusion of pre-forms. We demonstrate an infrared-glass based negative curvature fiber fabricated through extrusion. The fiber shows record low losses in 9.75 - 10.5 µm range (which overlaps with the CO2 emission bands). We show the fiber's lowest order mode and measure the numerical aperture in the longwave infrared transmission band. The possibility to directly extrude a negative curvature fiber with no penalties in losses is a strong motivation to think beyond the limitations of stack-and-draw to novel shapes for negative curvature fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...